Extreme value statistics and the theory of rare events

Francesco Mori

Saturday Mornings of Theoretical Physics 25/02/2023

Extreme value statistics: motivation

Applications to epidemics[1], finance [2], climate science [3]

From Wikipedia

[1] M. Marani, Marco, et al., *Proceedings of the National Academy of Sciences* **118**: e2105482118 (2021).

[2] S.N. Majumdar and J.-P. Bouchaud, Quantitative Finance 8, 753 (2008).

[3] G. Wergen and J. Krug, Europhys. Lett. 92, 30008 (2010).

Extreme value statistics: an example

Di Baldassarre, Giuliano, et al., *Hydrological Sciences Journal*, 56.2 (2011): 199-211.

Central Limit Theorem

$$S_N = X_1 + X_2 + \ldots + X_N$$

$$P(S) = \text{Prob.}(S_N = S) \approx \frac{1}{\sqrt{2\pi\sigma^2 N}} \exp\left(-\frac{S^2}{2\sigma^2 N}\right)$$

UNIVERSAL!

$$p(X) = \begin{cases} 1 & \text{if } 0 < x < 1 \,, \\ 0 & \text{otherwise} \end{cases}$$

$$p(X) = \begin{cases} 1/2 & \text{if } 2 < x < 3, \\ 1/2 & \text{if } 0 < x < 1, \\ 0 & \text{otherwise} \end{cases} \overset{0.5}{\underset{0.2}{0.4}} \int_{0.2} \int_{0.2}$$

Extreme value statistics: an example

Extreme value statistics: setting

 X_1, X_2, \ldots, X_N

random variables with distribution

$$P(X_1,\ldots,X_N)$$

[1] S. N. Majumdar, A. Pal, and G. Schehr, Physics Reports 840, 1 (2020).

Global Maximum

Given $P(X_1, \ldots, X_N)$ what can I say about the distribution of *M*?

Time of the maximum

Given $P(X_1, \ldots, X_N)$ what can I say about the distribution of t_{max} ? Applications to finance, disordered systems, sports...

[1] S. N. Majumdar, A. Pal, and G. Schehr, Physics Reports 840, 1 (2020).

Time of the maximum

(from Yahoo finance)

[1] S. N. Majumdar, A. Pal, and G. Schehr, Physics Reports 840, 1 (2020).

Record statistics

 X_i is a record if $X_i > \{X_1, X_2, \dots, X_{i-1}\}$

Applications to climate science, sports, evolution, insurance policies,...

[1] S. N. Majumdar, A. Pal, and G. Schehr, Physics Reports 840, 1 (2020).

Record statistics in climate science

From Wikipedia

Marathon world record

Extreme value statistics: setting

Independent and identically distributed variables

Example: Derrida's random energy model [1]

[1] Derrida, Bernard. "Random-energy model: An exactly solvable model of disordered systems." Physical Review B 24.5 (1981): 2613.

Gumbel distribution

p(X) decays exponentially fast for large x

$$P(M) = e^{-M - e^{-M}}$$

Extreme value distribution Numerical example

$$p(X) = \begin{cases} e^{-X} & \text{if } X > 0, \\ 0 & \text{otherwise} \end{cases}$$

Extreme value distribution Numerical example

$$p(X) = \frac{1}{4} \left(e^{-|X-3|} + e^{-|X+3|} \right)$$

Does it work on real data? Radcliffe Observatory

Does it work on real data? Radcliffe Meteorological Station

Images from Green Templeton College

Does it work on real data?

Radcliffe Meteorological Station

November 1813 Barometer without within Wind Rain 29,52 40 45 West D: 4.9 calm 29,20 1.2 43

YYYY	ММ	DD	Tmax °C	Tmin °C	Daily Tmean °C	Daily range degC	Grass min °C	Air frost 0/1	Ground frost 0/1	Max ≥ 25.0°C	Max ≥ 30.0°C	Min ≥ 15.0 °C	Max < 0 °C
1815	1	1	6.6	-1.5	2.6	8.1		1		0	0	0	0
1815	1	2	4.9	-3.2	0.9	8.1		1		0	0	0	0
1815	1	3	2.6	-5.6	-1.5	8.2		1		0	0	0	0
1815	1	4	2.1	-6.1	-2	8.2		1		0	0	0	0
1815	1	5	1	-7.2	-3.1	8.2		1		0	0	0	0
1815	1	6	1.5	-6.6	-2.6	8.1		1		0	0	0	0
1815	1	7	-0.7	-9	-4.9	8.3		1		0	0	0	1
1815	1	8	4.9	-3.2	0.9	8.1		1		0	0	0	0
1815	1	9	1	-7.2	-3.1	8.2		1		0	0	0	0
1815	1	10	7.7	-0.4	3.7	8.1		1		0	0	0	0

Images from the School of Geography and Environment

Maximal temperature in October

Data from https://www.geog.ox.ac.uk/

Maximal temperature in October

Data from https://www.geog.ox.ac.uk/

Maximal temperature in October

Data from https://www.geog.ox.ac.uk/

$$P(X_1, \dots, X_N) = \prod_{i=1}^N p(X_i)$$

X_i is a record if X_i > {X₁, , X₂, ..., X_{i-1}}

Given a sequence of *N* random numbers, how many records do we expect to see?

$$P(X_1, \dots, X_N) = \prod_{i=1}^N p(X_i)$$

X_i is a record if $X_i > \{X_1, X_2, \dots, X_{i-1}\}$

Given a sequence of *N* random numbers, how many records do we expect to see?

Prob.(X_i is a record) = Prob.(X_i > X₁, X_i > X₂, ..., X_i > X_{i-1}) =
$$\frac{1}{i}$$

$$P(X_1, \dots, X_N) = \prod_{i=1}^N p(X_i)$$

X_i is a record if $X_i > \{X_1, X_2, \dots, X_{i-1}\}$

Given a sequence of *N* random numbers, how many records do we expect to see?

Prob.(X_i is a record) = Prob.(X_i > X₁, X_i > X₂, ..., X_i > X_{i-1}) =
$$\frac{1}{i}$$

$$\langle N_R \rangle = \sum_{i=1}^N \frac{1}{i} \approx \int_1^N \frac{1}{i} di = \log N$$

$$P(X_1, \dots, X_N) = \prod_{i=1}^N p(X_i)$$

X_i is a record if X_i > {X₁, , X₂, ..., X_{i-1}}

Given a sequence of N random numbers, how many records do we expect to see?

Prob.(X_i is a record) = Prob.(X_i > X₁, X_i > X₂, ..., X_i > X_{i-1}) =
$$\frac{1}{i}$$

$$\langle N_R \rangle = \sum_{i=1}^N \frac{1}{i} \approx \int_1^N \frac{1}{i} di = \log N$$

UNIVERSAL!

$$\langle N_R \rangle \approx \log(N)$$

Marathon record statistics

In the last 20 editions of the Olympics — 7 Marathon records
Maximal temperature in October

Data from https://www.geog.ox.ac.uk/

Correlated systems

Correlated random variables

$$P(X_1,\ldots,X_N)\neq\prod_{i=1}^N p(X_i)$$

No general technique!

Weakly correlated random variables

Weakly correlated random variables

- [1] C. A. Tracy and H. Widom, Commun. Math. Phys. 159, 151 (1994), 177, 727 (1996).
- [2] S. N. Majumdar and G. Schehr, J. Stat. Mech. Theory Exp. P01012 (2014).
- [3] S. N. Majumdar and A. Comtet, *Phys. Rev. Lett.* 92, 225501 (2004).

- [1] C. A. Tracy and H. Widom, Commun. Math. Phys. 159, 151 (1994), 177, 727 (1996).
- [2] S. N. Majumdar and G. Schehr, J. Stat. Mech. Theory Exp. P01012 (2014).
- [3] S. N. Majumdar and A. Comtet, *Phys. Rev. Lett.* 92, 225501 (2004).

Random walks

Random walks

Survival probability

Sparre Andersen theorem

 $P(t_{\max}|n) = ?$

Applications to finance, sports,...

$$q_k = \binom{2k}{k} 2^{-2k}$$

$$q_k = \binom{2k}{k} 2^{-2k}$$

$$P(t_{\max}|n) = q_{t_{\max}}q_{n-t_{\max}}$$

Active Particles

Active vs passive matter

Active Motion of E. Coli bacteria (Berg et al.)

- Persistent motion (absorbing energy from the environment)
- Out of equilibrium
- Alive

(Passive) Brownian Motion

- Random motion (collisions with smaller molecules)
- Equilibrium
- Dead

Run-and-tumble particle (RTP) model

RTP model

- Motion in d dimensions
- Random velocity v~ W(v)
- Tumbling rate γ

E. Coli bacteria (Berg et al.)

[1] E. Orsingher, Random Oper. and Stoch. Equ. 3, 9 (1995).

Run-and-tumble particle (RTP) model

E. Coli bacteria (Berg et al.)

[1] E. Orsingher, Random Oper. and Stoch. Equ. 3, 9 (1995).

$$S(t) = \frac{1}{2}e^{-\gamma t/2} \left(I_0(\gamma t/2) + I_1(\gamma t/2) \right)$$

$$S(t) = \frac{1}{2}e^{-\gamma t/2} \left(I_0(\gamma t/2) + I_1(\gamma t/2) \right)$$

$$S(t) = \frac{1}{2}e^{-\gamma t/2} \left(I_0(\gamma t/2) + I_1(\gamma t/2) \right)$$

Position distribution

Not universal!

Sparre Andersen theorem

It is not obvious how to apply this result to the RTP model

Mapping to a discrete-time random walk (in Laplace space)

[1] E. Sparre Andersen, Math. Scand. 2, 195 (1954).

Sparre Andersen Theorem

Extreme Value Statistics

Time of the maximum [1] Average number of records [1] 0 d=1 □ d=2 3.5 0.8 8888888 \times d=3 \triangle half-Cauchy (d=2) (**t**) 0.6 ⊃ 3 Theory <N(t)> P(t max 2.5 \bigcirc d=1 \square d=2 × d=3 2 d=4 Δ Theory 1.5 00 10 2 4 6 8 10 8 10 2 6 4 ť t

Also universal!

^[1] FM, P. Le Doussal, S. N. Majumdar, and G. Schehr, Phys. Rev. E 102, 042133 (2020).

Extreme Value Statistics

- Using simple models, we can learn a lot about the statistics of extreme events, records, ...
- Many applications to physics, finance, evolution theory, ...
- Often we find universal results, independent of the details of the model
- Can we find a general theory of rare events in correlated systems?

Thank you for the attention