# Extreme value statistics and the theory of rare events 

## Francesco Mori

Saturday Mornings of Theoretical Physics 25/02/2023


## Extreme value statistics: motivation

Applications to epidemics[1], finance [2], climate science [3]


From Our World in Data


Apple price Jan 2021-Jan 2022 (from Yahoo finance)


From Wikipedia

Extreme value statistics: an example


## Central Limit Theorem

$$
\begin{gathered}
S_{N}=X_{1}+X_{2}+\ldots+X_{N} \\
P(S)=\text { Prob. }\left(S_{N}=S\right) \approx \frac{1}{\sqrt{2 \pi \sigma^{2} N}} \exp \left(-\frac{S^{2}}{2 \sigma^{2} N}\right)
\end{gathered}
$$

UNIVERSAL!


Gaussian distribution
(a.k.a. Normal distribution)

## Central Limit Theorem Numerical example

$$
p(X)= \begin{cases}1 & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$



## Central Limit Theorem Numerical example

$$
\begin{gathered}
p(X)= \begin{cases}1 & \text { if } 0<x<1, \\
0 & \text { otherwise }\end{cases} \\
P(S)
\end{gathered}
$$



- $\mathrm{N}=1$



## Central Limit Theorem Numerical example

## Central Limit Theorem

 Numerical example$$
\begin{aligned}
& \text { - } \mathrm{N}=1
\end{aligned}
$$

Extreme value statistics: an example


## Extreme value statistics: setting

$X_{i}$ 】


$$
X_{1}, X_{2}, \ldots, X_{N}
$$

random variables with distribution

$$
P\left(X_{1}, \ldots, X_{N}\right)
$$

## Global Maximum



Given $P\left(X_{1}, \ldots, X_{N}\right)$ what can I say about the distribution of $M$ ?

## Time of the maximum



Given $P\left(X_{1}, \ldots, X_{N}\right)$ what can I say about the distribution of $t_{\max }$ ?
Applications to finance, disordered systems, sports...

## Time of the maximum



Apple price Jan 2021-Jan 2022
(from Yahoo finance)

## Record statistics



$$
X_{i} \text { is a record if } X_{i}>\left\{X_{1},, X_{2}, \ldots, X_{i-1}\right\}
$$

Applications to climate science, sports, evolution, insurance policies,...

## Record statistics in climate science

Global average temperature change


## Marathon world record



## Extreme value statistics: setting



Record statistics
$N_{R}$ (Number of records)

## Independent and identically distributed variables



## No correlations

Example: Derrida's random energy model [1]

## Extreme Value Theorem

$$
M=\max _{1 \leq i \leq N} X_{i}
$$

## Gumbel

$p(X)$ decays
exponentially fast for large $x$

Weibull
$p(X)$ has an upper bounded support


## Gumbel distribution

$p(X)$ decays exponentially fast for large $x$

$$
P(M)=e^{-M-e^{-M}}
$$



## Extreme value distribution Numerical example

$$
p(X)=\left\{\begin{array}{l}
e^{-X} \quad \text { if } X>0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$



## Extreme value distribution Numerical example

$$
p(X)=\left\{\begin{array}{l}
e^{-X} \quad \text { if } X>0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$




## Extreme value distribution Numerical example

$$
p(X)=\frac{1}{4}\left(e^{-|X-3|}+e^{-|X+3|}\right)
$$



## Extreme value distribution Numerical example

$$
p(X)=\frac{1}{4}\left(e^{-|X-3|}+e^{-|X+3|}\right)
$$



$$
\text { - } \mathrm{N}=1
$$

## Does it work on real data? Radcliffe Observatory



## Does it work on real data? <br> Radcliffe Meteorological Station



## Does it work on real data? <br> Radcliffe Meteorological Station



| YYYY | MM | DD | Tmax ${ }^{\circ} \mathrm{C}$ | Tmin ${ }^{\circ} \mathrm{C}$ | Daily Tmean ${ }^{\circ} \mathrm{C}$ | Daily range degC | Grass min ${ }^{\circ} \mathrm{C}$ | Air frost 0/1 | Ground frost 0/1 | Max $\geq 25 . \mathbf{0}^{\circ} \mathrm{C}$ | Max $\geq 30.0^{\circ} \mathrm{C}$ | Min $\geq 15.0{ }^{\circ} \mathrm{C}$ | Max $<0^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1815 | 1 | 1 | 6.6 | -1.5 | 2.6 | 8.1 |  | 1 |  | 0 | 0 | 0 | 0 |
| 1815 | 1 | 2 | 4.9 | -3.2 | 0.9 | 8.1 |  | 1 |  | 0 | 0 | 0 | 0 |
| 1815 | 1 | 3 | 2.6 | -5.6 | -1.5 | 8.2 |  | 1 |  | 0 | 0 | 0 | 0 |
| 1815 | 1 | 4 | 2.1 | -6.1 | -2 | 8.2 |  | 1 |  | 0 | 0 | 0 | 0 |
| 1815 | 1 | 5 | 1 | -7.2 | -3.1 | 8.2 |  | 1 |  | 0 | 0 | 0 | 0 |
| 1815 | 1 | 6 | 1.5 | -6.6 | -2.6 | 8.1 |  | 1 |  | 0 | 0 | 0 | 0 |
| 1815 | 1 | 7 | -0.7 | -9 | -4.9 | 8.3 |  | 1 |  | 0 | 0 | 0 | 1 |
| 1815 | 1 | 8 | 4.9 | -3.2 | 0.9 | 8.1 |  | 1 |  | 0 | 0 | 0 | 0 |
| 1815 | 1 | 9 | 1 | -7.2 | -3.1 | 8.2 |  | 1 |  | 0 | 0 | 0 | 0 |
| 1815 | 1 | 10 | 7.7 | -0.4 | 3.7 | 8.1 |  | 1 |  | 0 | 0 | 0 | 0 |

Images from the School of Geography and Environment

## Maximal temperature in October



Data from https://www.geog.ox.ac.uk/

## Maximal temperature in October



Data from https://www.geog.ox.ac.uk/

## Maximal temperature in October



Data from https://www.geog.ox.ac.uk/

Independent variables: record statistics


$$
P\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1}^{N} p\left(X_{i}\right)
$$

$X_{i}$ is a record if $X_{i}>\left\{X_{1},, X_{2}, \ldots, X_{i-1}\right\}$

Given a sequence of $N$ random numbers, how many records do we expect to see?

Independent variables: record statistics


$$
P\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1}^{N} p\left(X_{i}\right)
$$

$X_{i}$ is a record if $X_{i}>\left\{X_{1},, X_{2}, \ldots, X_{i-1}\right\}$

Given a sequence of $N$ random numbers, how many records do we expect to see?
$\operatorname{Prob} .\left(X_{i}\right.$ is a record $)=\operatorname{Prob} .\left(X_{i}>X_{1}, X_{i}>X_{2}, \ldots, X_{i}>X_{i-1}\right)=\frac{1}{i}$

Independent variables: record statistics


$$
P\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1}^{N} p\left(X_{i}\right)
$$

$X_{i}$ is a record if $X_{i}>\left\{X_{1},, X_{2}, \ldots, X_{i-1}\right\}$

Given a sequence of $N$ random numbers, how many records do we expect to see?
$\operatorname{Prob} .\left(X_{i}\right.$ is a record $)=\operatorname{Prob} .\left(X_{i}>X_{1}, X_{i}>X_{2}, \ldots, X_{i}>X_{i-1}\right)=\frac{1}{i}$

$$
\left\langle N_{R}\right\rangle=\sum_{i=1}^{N} \frac{1}{i} \approx \int_{1}^{N} \frac{1}{i} d i=\log N
$$

Independent variables: record statistics


$$
P\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1}^{N} p\left(X_{i}\right)
$$

$X_{i}$ is a record if $X_{i}>\left\{X_{1},, X_{2}, \ldots, X_{i-1}\right\}$

Given a sequence of $N$ random numbers, how many records do we expect to see?
$\operatorname{Prob} .\left(X_{i}\right.$ is a record $)=\operatorname{Prob} .\left(X_{i}>X_{1}, X_{i}>X_{2}, \ldots, X_{i}>X_{i-1}\right)=\frac{1}{i}$

$$
\left\langle N_{R}\right\rangle=\sum_{i=1}^{N} \frac{1}{i} \approx \int_{1}^{N} \frac{1}{i} d i=\log N
$$

UNIVERSAL!

## Independent variables: record statistics

$$
\left\langle N_{R}\right\rangle \approx \log (N)
$$



## Marathon record statistics



In the last 20 editions of the Olympics

- 7 Marathon records


## Maximal temperature in October



In the last 200 years

- 9 records

Data from https://www.geog.ox.ac.uk/

## Correlated systems

Correlated random variables

$$
P\left(X_{1}, \ldots, X_{N}\right) \neq \prod_{i=1}^{N} p\left(X_{i}\right)
$$

No general technique!

## Weakly correlated random variables

$$
\begin{aligned}
& \text { correlations } \\
& \text { correlations } \\
& \left\langle X_{i} X_{j}\right\rangle-\left\langle X_{i}\right\rangle\left\langle X_{j}\right\rangle \sim e^{-|i-j| / \xi}
\end{aligned}
$$

## Weakly correlated random variables



## Exactly solvable models

## Strongly correlated random variables



Random
Matrices [1,2]

From www.sissa.it


From Takeuchi et al., Scientific reports (2011).



## Exactly solvable models

## Strongly correlated random variables



## Random walks



## Random walks


Independent and identically

$$
\left.X_{k}=X_{k-1}+\eta_{k} \quad \quad \begin{array}{c}
\text { distributed jumps } \\
\eta_{k}
\end{array}\right) p(\eta)
$$

$$
P\left(X_{1}, X_{2}, \ldots, X_{N}\right)=\prod_{i=1}^{N-1} p\left(X_{i+1}-X_{i}\right)
$$

## Survival probability



## Survival probability



## Survival probability

$$
\begin{aligned}
& \operatorname{Prob}\left(X_{1} \geq 0, X_{2} \geq 0, \ldots, X_{n} \geq 0 \mid X_{0}=0\right) \\
& q_{n}=\int_{-\infty}^{\infty} d \eta_{1} \ldots \int_{-\infty}^{\infty} d \eta_{n} \theta\left(\eta_{1}\right) \theta\left(\eta_{1}+\eta_{2}\right) \ldots \theta\left(\eta_{1}+\eta_{2}+\ldots+\eta_{n}\right) \prod_{i=1}^{n} p\left(\eta_{i}\right)
\end{aligned}
$$

## Sparre Andersen theorem



## Sparre Andersen theorem


$n$

## Time of the maximum



Applications to finance, sports,...

Time of the maximum


Time of the maximum


Time of the maximum


$$
q_{k}=\binom{2 k}{k} 2^{-2 k}
$$

Time of the maximum


$$
q_{k}=\binom{2 k}{k} 2^{-2 k}
$$

Time of the maximum


$$
q_{k}=\binom{2 k}{k} 2^{-2 k}
$$

Time of the maximum


$$
q_{k}=\binom{2 k}{k} 2^{-2 k}
$$

$$
P\left(t_{\max } \mid n\right)=q_{t_{\max }} q_{n-t_{\max }}
$$

Time of the maximum

UNIVERSAL!
Independent of $p(\eta)$ for any $n$

$$
q_{k}=\binom{2 k}{k} 2^{-2 k} \quad P\left(t_{\max } \mid n\right)=q_{t_{\max }} q_{n-t_{\max }}
$$

## Time of the maximum of a random walk



$$
\begin{aligned}
n & \rightarrow \infty \\
P\left(t_{\max } \mid n\right) & \approx \frac{1}{\pi \sqrt{t_{\max }\left(n-t_{\max }\right)}}
\end{aligned}
$$

## Time of the maximum of a random walk



## Time of the maximum of a random walk



## Time of the maximum of a random walk



$$
\begin{aligned}
n & \rightarrow \infty \\
P\left(t_{\max } \mid n\right) & \approx \frac{1}{\pi \sqrt{t_{\max }\left(n-t_{\max }\right)}}
\end{aligned}
$$

Time of the minimum of a random walk


$$
P\left(t_{\min } \mid n\right) \approx \frac{1}{\pi \sqrt{t_{\min }\left(n-t_{\min }\right)}}
$$

Active Particles

## Active vs passive matter



Active Motion of
E. Coli bacteria
(Berg et al.)

- Persistent motion (absorbing energy from the environment)
- Out of equilibrium
- Alive

(Passive) Brownian
Motion
- Random motion (collisions with smaller molecules)
- Equilibrium
- Dead


## Run-and-tumble particle (RTP) model



- Motion in d dimensions
- Random velocity $\mathrm{v} \sim \mathrm{W}(\mathrm{v})$
- Tumbling rate $\gamma$


## Run-and-tumble particle (RTP) model

RTP model

- Motion in d dimensions
- Random velocity v~ W(v)
- Tumbling rate $\gamma$
What is the survival probability $\mathbf{S}(\mathbf{t})$ ?
$\mathbf{S}(\mathbf{t})=$ probability that the $\mathbf{x}$-component of the particle does not change sign up to time $t$
Known for d=1 and constant velocity [1]

$$
S(t)=\frac{1}{2} e^{-\gamma t / 2}\left(I_{0}(\gamma t / 2)+I_{1}(\gamma t / 2)\right)
$$

E. Coli bacteria (Berg et al.)

Numerical simulations

$$
S(t)=\frac{1}{2} e^{-\gamma t / 2}\left(I_{0}(\gamma t / 2)+I_{1}(\gamma t / 2)\right)
$$



Numerical simulations

$$
S(t)=\frac{1}{2} e^{-\gamma t / 2}\left(I_{0}(\gamma t / 2)+I_{1}(\gamma t / 2)\right)
$$



Numerical simulations

$$
S(t)=\frac{1}{2} e^{-\gamma t / 2}\left(I_{0}(\gamma t / 2)+I_{1}(\gamma t / 2)\right)
$$



Numerical simulations


## Numerical simulations




## Position distribution

## Not universal!



## Sparre Andersen theorem



It is not obvious how to apply this result to the RTP model

Mapping to a discrete-time random walk (in Laplace space)

## Sparre Andersen Theorem

Universality


## Extreme Value Statistics

Time of the maximum [1]


Average number of records [1]


## Also universal!

## Extreme Value Statistics

- Using simple models, we can learn a lot about the statistics of extreme events, records, ...
- Many applications to physics, finance, evolution theory, ...
- Often we find universal results, independent of the details of the model
- Can we find a general theory of rare events in correlated systems?

Thank you for the attention

